- লেখক Elizabeth Oswald [email protected].
- Public 2024-01-13 00:04.
- সর্বশেষ পরিবর্তিত 2025-01-23 14:58.
পলিনোমিয়াল ইন্টারপোলেশন হল পরিচিত ডেটা পয়েন্টের মধ্যে মান অনুমান করার একটি পদ্ধতি। … বৃহত্তম সূচকের মানকে বলা হয় বহুপদীর ডিগ্রি। যদি ডেটার একটি সেটে n পরিচিত বিন্দু থাকে, তাহলে n-1 ডিগ্রী বা তার চেয়ে ছোট একটি বহুপদ আছে যা এই সমস্ত বিন্দুর মধ্য দিয়ে যায়।
আপনি বহুপদী ইন্টারপোলেশন বলতে কী বোঝ?
সংখ্যাগত বিশ্লেষণে, বহুপদী ইন্টারপোলেশন হল একটি প্রদত্ত ডেটার ইন্টারপোলেশন যা সম্ভাব্য সর্বনিম্ন ডিগ্রির বহুপদ দ্বারা সেট করা হয় যা ডেটাসেটের বিন্দুগুলির মধ্য দিয়ে যায়।।
আপনি কিভাবে একটি বহুপদীর ইন্টারপোলেশন খুঁজে পান?
টেবিল ব্যবহার করা। একবার বিভক্ত পার্থক্যগুলি গণনা করা হয়ে গেলে, আমরা নিম্নলিখিত সূত্রটি ব্যবহার করে ≤n ডিগ্রি বিশিষ্ট ইন্টারপোলেটিং বহুপদী f(x) গণনা করতে পারি। নিউটনের বিভক্ত পার্থক্য সূত্র f(x)=f[x0]+(x−x0)f[x1, x0]+(x−x0)(x−x1)f[x2, x1, x0]+(x−x0)(x−x1)(x−x2)f[x3, x2, x1, x0]+⋯+(x−x0)⋯(x−xn−1)f[xn, …, x0]।
ইন্টারপোলেশন বহুপদী অনন্য?
উপপাদ্য 4.1 বহুপদী ইন্টারপোলেটিং এর স্বতন্ত্রতা। x0 < x1 < ··· < xn পয়েন্টের একটি সেট দেওয়া হলে, শুধুমাত্র একটি পলিনোমিয়াল আছে যেটি সেই বিন্দুতে একটি ফাংশনকে ইন্টারপোলেট করে। প্রমাণ ধরুন, P(x) এবং Q(x) সর্বাধিক n ডিগ্রির দুটি ইন্টারপোলেটিং বহুপদ, x0 < x1 < ···< xn.
বহুপদ ইন্টারপোলেশনে ত্রুটি কী?
n তারপর এর জন্য ত্রুটি শব্দনোড xi ব্যবহার করে বহুপদী ইন্টারপোলেশন হয়। E(x)=|f(x) −P(x)| ≤ 1 . 2n(n + 1)!